Перевод: с русского на все языки

со всех языков на русский

model making

  • 1 model making machine

    Англо-русский словарь промышленной и научной лексики > model making machine

  • 2 model preparation equipment

    Англо-русский словарь промышленной и научной лексики > model preparation equipment

  • 3 Caring Adult Role Model

    Non-profit-making organization: CARM

    Универсальный русско-английский словарь > Caring Adult Role Model

  • 4 построение модели

    model construction, model building, model making

    Русско-английский словарь по электронике > построение модели

  • 5 построение модели

    model building, model construction, model making

    Русско-английский словарь по радиоэлектронике > построение модели

  • 6 построение модели

    model definition, model making, model construction

    Русско-Английский новый экономический словарь > построение модели

  • 7 построение модели

    model making, model(l)ing

    4000 полезных слов и выражений > построение модели

  • 8 создание модели

    model making мат.

    Русско-английский научно-технический словарь Масловского > создание модели

  • 9 построение модели

    Универсальный русско-английский словарь > построение модели

  • 10 картографическое учреждение по изготовлению макетов местности и рельефных карт

    Cartography: model-making unit

    Универсальный русско-английский словарь > картографическое учреждение по изготовлению макетов местности и рельефных карт

  • 11 моделизм

    Универсальный русско-английский словарь > моделизм

  • 12 топографическое подразделение по изготовлению макетов местности и рельефных карт

    Универсальный русско-английский словарь > топографическое подразделение по изготовлению макетов местности и рельефных карт

  • 13 судомоделизм

    [-дэ-] м.

    Новый большой русско-английский словарь > судомоделизм

  • 14 судомодельный

    [-дэ́-]

    Новый большой русско-английский словарь > судомодельный

  • 15 модельный цех

    model shop, mold-making shop, pattern shop

    Русско-английский исловарь по машиностроению и автоматизации производства > модельный цех

  • 16 рекурсивная модель полезности

    модель принципал-агент со скрытыми действиями/скрытой информацией, гибридная — hybrid hidden action/hidden information principal-agent model

    модель принятия решений, обобщенная — generalized model of decision making

    На основе фиксированных альтернатив можно разработать обобщенную модель принятия решений с возможностью адаптации к нескольким индивидам и решениям, которая, однако, будет варьировать на случаях предъявления исходных данных этой модели. — A generalized model of decision making can be developed among fixed alternatives that is adaptable to a number of individuals and decisions, but that varies from case to case by the input data presented to the model.

    Russian-English Dictionary "Microeconomics" > рекурсивная модель полезности

  • 17 модульный центр обработки данных (ЦОД)

    1. modular data center

     

    модульный центр обработки данных (ЦОД)
    -
    [Интент]

    Параллельные тексты EN-RU

    [ http://loosebolts.wordpress.com/2008/12/02/our-vision-for-generation-4-modular-data-centers-one-way-of-getting-it-just-right/]

    [ http://dcnt.ru/?p=9299#more-9299]

    Data Centers are a hot topic these days. No matter where you look, this once obscure aspect of infrastructure is getting a lot of attention. For years, there have been cost pressures on IT operations and this, when the need for modern capacity is greater than ever, has thrust data centers into the spotlight. Server and rack density continues to rise, placing DC professionals and businesses in tighter and tougher situations while they struggle to manage their IT environments. And now hyper-scale cloud infrastructure is taking traditional technologies to limits never explored before and focusing the imagination of the IT industry on new possibilities.

    В настоящее время центры обработки данных являются широко обсуждаемой темой. Куда ни посмотришь, этот некогда малоизвестный аспект инфраструктуры привлекает все больше внимания. Годами ИТ-отделы испытывали нехватку средств и это выдвинуло ЦОДы в центр внимания, в то время, когда необходимость в современных ЦОДах стала как никогда высокой. Плотность серверов и стоек продолжают расти, все больше усложняя ситуацию для специалистов в области охлаждения и организаций в их попытках управлять своими ИТ-средами. И теперь гипермасштабируемая облачная инфраструктура подвергает традиционные технологии невиданным ранее нагрузкам, и заставляет ИТ-индустрию искать новые возможности.

    At Microsoft, we have focused a lot of thought and research around how to best operate and maintain our global infrastructure and we want to share those learnings. While obviously there are some aspects that we keep to ourselves, we have shared how we operate facilities daily, our technologies and methodologies, and, most importantly, how we monitor and manage our facilities. Whether it’s speaking at industry events, inviting customers to our “Microsoft data center conferences” held in our data centers, or through other media like blogging and white papers, we believe sharing best practices is paramount and will drive the industry forward. So in that vein, we have some interesting news to share.

    В компании MicroSoft уделяют большое внимание изучению наилучших методов эксплуатации и технического обслуживания своей глобальной инфраструктуры и делятся результатами своих исследований. И хотя мы, конечно, не раскрываем некоторые аспекты своих исследований, мы делимся повседневным опытом эксплуатации дата-центров, своими технологиями и методологиями и, что важнее всего, методами контроля и управления своими объектами. Будь то доклады на отраслевых событиях, приглашение клиентов на наши конференции, которые посвящены центрам обработки данных MicroSoft, и проводятся в этих самых дата-центрах, или использование других средств, например, блоги и спецификации, мы уверены, что обмен передовым опытом имеет первостепенное значение и будет продвигать отрасль вперед.

    Today we are sharing our Generation 4 Modular Data Center plan. This is our vision and will be the foundation of our cloud data center infrastructure in the next five years. We believe it is one of the most revolutionary changes to happen to data centers in the last 30 years. Joining me, in writing this blog are Daniel Costello, my director of Data Center Research and Engineering and Christian Belady, principal power and cooling architect. I feel their voices will add significant value to driving understanding around the many benefits included in this new design paradigm.

    Сейчас мы хотим поделиться своим планом модульного дата-центра четвертого поколения. Это наше видение и оно будет основанием для инфраструктуры наших облачных дата-центров в ближайшие пять лет. Мы считаем, что это одно из самых революционных изменений в дата-центрах за последние 30 лет. Вместе со мной в написании этого блога участвовали Дэниел Костелло, директор по исследованиям и инжинирингу дата-центров, и Кристиан Белади, главный архитектор систем энергоснабжения и охлаждения. Мне кажется, что их авторитет придаст больше веса большому количеству преимуществ, включенных в эту новую парадигму проектирования.

    Our “Gen 4” modular data centers will take the flexibility of containerized servers—like those in our Chicago data center—and apply it across the entire facility. So what do we mean by modular? Think of it like “building blocks”, where the data center will be composed of modular units of prefabricated mechanical, electrical, security components, etc., in addition to containerized servers.

    Was there a key driver for the Generation 4 Data Center?

    Наши модульные дата-центры “Gen 4” будут гибкими с контейнерами серверов – как серверы в нашем чикагском дата-центре. И гибкость будет применяться ко всему ЦОД. Итак, что мы подразумеваем под модульностью? Мы думаем о ней как о “строительных блоках”, где дата-центр будет состоять из модульных блоков изготовленных в заводских условиях электрических систем и систем охлаждения, а также систем безопасности и т.п., в дополнение к контейнеризованным серверам.
    Был ли ключевой стимул для разработки дата-центра четвертого поколения?


    If we were to summarize the promise of our Gen 4 design into a single sentence it would be something like this: “A highly modular, scalable, efficient, just-in-time data center capacity program that can be delivered anywhere in the world very quickly and cheaply, while allowing for continued growth as required.” Sounds too good to be true, doesn’t it? Well, keep in mind that these concepts have been in initial development and prototyping for over a year and are based on cumulative knowledge of previous facility generations and the advances we have made since we began our investments in earnest on this new design.

    Если бы нам нужно было обобщить достоинства нашего проекта Gen 4 в одном предложении, это выглядело бы следующим образом: “Центр обработки данных с высоким уровнем модульности, расширяемости, и энергетической эффективности, а также возможностью постоянного расширения, в случае необходимости, который можно очень быстро и дешево развертывать в любом месте мира”. Звучит слишком хорошо для того чтобы быть правдой, не так ли? Ну, не забывайте, что эти концепции находились в процессе начальной разработки и создания опытного образца в течение более одного года и основываются на опыте, накопленном в ходе развития предыдущих поколений ЦОД, а также успехах, сделанных нами со времени, когда мы начали вкладывать серьезные средства в этот новый проект.

    One of the biggest challenges we’ve had at Microsoft is something Mike likes to call the ‘Goldilock’s Problem’. In a nutshell, the problem can be stated as:

    The worst thing we can do in delivering facilities for the business is not have enough capacity online, thus limiting the growth of our products and services.

    Одну из самых больших проблем, с которыми приходилось сталкиваться Майкрософт, Майк любит называть ‘Проблемой Лютика’. Вкратце, эту проблему можно выразить следующим образом:

    Самое худшее, что может быть при строительстве ЦОД для бизнеса, это не располагать достаточными производственными мощностями, и тем самым ограничивать рост наших продуктов и сервисов.

    The second worst thing we can do in delivering facilities for the business is to have too much capacity online.

    А вторым самым худшим моментом в этой сфере может слишком большое количество производственных мощностей.

    This has led to a focus on smart, intelligent growth for the business — refining our overall demand picture. It can’t be too hot. It can’t be too cold. It has to be ‘Just Right!’ The capital dollars of investment are too large to make without long term planning. As we struggled to master these interesting challenges, we had to ensure that our technological plan also included solutions for the business and operational challenges we faced as well.
    So let’s take a high level look at our Generation 4 design

    Это заставило нас сосредоточиваться на интеллектуальном росте для бизнеса — refining our overall demand picture. Это не должно быть слишком горячим. И это не должно быть слишком холодным. Это должно быть ‘как раз, таким как надо!’ Нельзя делать такие большие капиталовложения без долгосрочного планирования. Пока мы старались решить эти интересные проблемы, мы должны были гарантировать, что наш технологический план будет также включать решения для коммерческих и эксплуатационных проблем, с которыми нам также приходилось сталкиваться.
    Давайте рассмотрим наш проект дата-центра четвертого поколения

    Are you ready for some great visuals? Check out this video at Soapbox. Click here for the Microsoft 4th Gen Video.

    It’s a concept video that came out of my Data Center Research and Engineering team, under Daniel Costello, that will give you a view into what we think is the future.

    From a configuration, construct-ability and time to market perspective, our primary goals and objectives are to modularize the whole data center. Not just the server side (like the Chicago facility), but the mechanical and electrical space as well. This means using the same kind of parts in pre-manufactured modules, the ability to use containers, skids, or rack-based deployments and the ability to tailor the Redundancy and Reliability requirements to the application at a very specific level.


    Посмотрите это видео, перейдите по ссылке для просмотра видео о Microsoft 4th Gen:

    Это концептуальное видео, созданное командой отдела Data Center Research and Engineering, возглавляемого Дэниелом Костелло, которое даст вам наше представление о будущем.

    С точки зрения конфигурации, строительной технологичности и времени вывода на рынок, нашими главными целями и задачами агрегатирование всего дата-центра. Не только серверную часть, как дата-центр в Чикаго, но также системы охлаждения и электрические системы. Это означает применение деталей одного типа в сборных модулях, возможность использования контейнеров, салазок, или стоечных систем, а также возможность подстраивать требования избыточности и надежности для данного приложения на очень специфичном уровне.

    Our goals from a cost perspective were simple in concept but tough to deliver. First and foremost, we had to reduce the capital cost per critical Mega Watt by the class of use. Some applications can run with N-level redundancy in the infrastructure, others require a little more infrastructure for support. These different classes of infrastructure requirements meant that optimizing for all cost classes was paramount. At Microsoft, we are not a one trick pony and have many Online products and services (240+) that require different levels of operational support. We understand that and ensured that we addressed it in our design which will allow us to reduce capital costs by 20%-40% or greater depending upon class.


    Нашими целями в области затрат были концептуально простыми, но трудно реализуемыми. В первую очередь мы должны были снизить капитальные затраты в пересчете на один мегаватт, в зависимости от класса резервирования. Некоторые приложения могут вполне работать на базе инфраструктуры с резервированием на уровне N, то есть без резервирования, а для работы других приложений требуется больше инфраструктуры. Эти разные классы требований инфраструктуры подразумевали, что оптимизация всех классов затрат имеет преобладающее значение. В Майкрософт мы не ограничиваемся одним решением и располагаем большим количеством интерактивных продуктов и сервисов (240+), которым требуются разные уровни эксплуатационной поддержки. Мы понимаем это, и учитываем это в своем проекте, который позволит нам сокращать капитальные затраты на 20%-40% или более в зависимости от класса.

    For example, non-critical or geo redundant applications have low hardware reliability requirements on a location basis. As a result, Gen 4 can be configured to provide stripped down, low-cost infrastructure with little or no redundancy and/or temperature control. Let’s say an Online service team decides that due to the dramatically lower cost, they will simply use uncontrolled outside air with temperatures ranging 10-35 C and 20-80% RH. The reality is we are already spec-ing this for all of our servers today and working with server vendors to broaden that range even further as Gen 4 becomes a reality. For this class of infrastructure, we eliminate generators, chillers, UPSs, and possibly lower costs relative to traditional infrastructure.

    Например, некритичные или гео-избыточные системы имеют низкие требования к аппаратной надежности на основе местоположения. В результате этого, Gen 4 можно конфигурировать для упрощенной, недорогой инфраструктуры с низким уровнем (или вообще без резервирования) резервирования и / или температурного контроля. Скажем, команда интерактивного сервиса решает, что, в связи с намного меньшими затратами, они будут просто использовать некондиционированный наружный воздух с температурой 10-35°C и влажностью 20-80% RH. В реальности мы уже сегодня предъявляем эти требования к своим серверам и работаем с поставщиками серверов над еще большим расширением диапазона температур, так как наш модуль и подход Gen 4 становится реальностью. Для подобного класса инфраструктуры мы удаляем генераторы, чиллеры, ИБП, и, возможно, будем предлагать более низкие затраты, по сравнению с традиционной инфраструктурой.

    Applications that demand higher level of redundancy or temperature control will use configurations of Gen 4 to meet those needs, however, they will also cost more (but still less than traditional data centers). We see this cost difference driving engineering behavioral change in that we predict more applications will drive towards Geo redundancy to lower costs.

    Системы, которым требуется более высокий уровень резервирования или температурного контроля, будут использовать конфигурации Gen 4, отвечающие этим требованиям, однако, они будут также стоить больше. Но все равно они будут стоить меньше, чем традиционные дата-центры. Мы предвидим, что эти различия в затратах будут вызывать изменения в методах инжиниринга, и по нашим прогнозам, это будет выражаться в переходе все большего числа систем на гео-избыточность и меньшие затраты.

    Another cool thing about Gen 4 is that it allows us to deploy capacity when our demand dictates it. Once finalized, we will no longer need to make large upfront investments. Imagine driving capital costs more closely in-line with actual demand, thus greatly reducing time-to-market and adding the capacity Online inherent in the design. Also reduced is the amount of construction labor required to put these “building blocks” together. Since the entire platform requires pre-manufacture of its core components, on-site construction costs are lowered. This allows us to maximize our return on invested capital.

    Еще одно достоинство Gen 4 состоит в том, что он позволяет нам разворачивать дополнительные мощности, когда нам это необходимо. Как только мы закончим проект, нам больше не нужно будет делать большие начальные капиталовложения. Представьте себе возможность более точного согласования капитальных затрат с реальными требованиями, и тем самым значительного снижения времени вывода на рынок и интерактивного добавления мощностей, предусматриваемого проектом. Также снижен объем строительных работ, требуемых для сборки этих “строительных блоков”. Поскольку вся платформа требует предварительного изготовления ее базовых компонентов, затраты на сборку также снижены. Это позволит нам увеличить до максимума окупаемость своих капиталовложений.
    Мы все подвергаем сомнению

    In our design process, we questioned everything. You may notice there is no roof and some might be uncomfortable with this. We explored the need of one and throughout our research we got some surprising (positive) results that showed one wasn’t needed.

    В своем процессе проектирования мы все подвергаем сомнению. Вы, наверное, обратили внимание на отсутствие крыши, и некоторым специалистам это могло не понравиться. Мы изучили необходимость в крыше и в ходе своих исследований получили удивительные результаты, которые показали, что крыша не нужна.
    Серийное производство дата центров


    In short, we are striving to bring Henry Ford’s Model T factory to the data center. http://en.wikipedia.org/wiki/Henry_Ford#Model_T. Gen 4 will move data centers from a custom design and build model to a commoditized manufacturing approach. We intend to have our components built in factories and then assemble them in one location (the data center site) very quickly. Think about how a computer, car or plane is built today. Components are manufactured by different companies all over the world to a predefined spec and then integrated in one location based on demands and feature requirements. And just like Henry Ford’s assembly line drove the cost of building and the time-to-market down dramatically for the automobile industry, we expect Gen 4 to do the same for data centers. Everything will be pre-manufactured and assembled on the pad.

    Мы хотим применить модель автомобильной фабрики Генри Форда к дата-центру. Проект Gen 4 будет способствовать переходу от модели специализированного проектирования и строительства к товарно-производственному, серийному подходу. Мы намерены изготавливать свои компоненты на заводах, а затем очень быстро собирать их в одном месте, в месте строительства дата-центра. Подумайте о том, как сегодня изготавливается компьютер, автомобиль или самолет. Компоненты изготавливаются по заранее определенным спецификациям разными компаниями во всем мире, затем собираются в одном месте на основе спроса и требуемых характеристик. И точно так же как сборочный конвейер Генри Форда привел к значительному уменьшению затрат на производство и времени вывода на рынок в автомобильной промышленности, мы надеемся, что Gen 4 сделает то же самое для дата-центров. Все будет предварительно изготавливаться и собираться на месте.
    Невероятно энергоэффективный ЦОД


    And did we mention that this platform will be, overall, incredibly energy efficient? From a total energy perspective not only will we have remarkable PUE values, but the total cost of energy going into the facility will be greatly reduced as well. How much energy goes into making concrete? Will we need as much of it? How much energy goes into the fuel of the construction vehicles? This will also be greatly reduced! A key driver is our goal to achieve an average PUE at or below 1.125 by 2012 across our data centers. More than that, we are on a mission to reduce the overall amount of copper and water used in these facilities. We believe these will be the next areas of industry attention when and if the energy problem is solved. So we are asking today…“how can we build a data center with less building”?

    А мы упоминали, что эта платформа будет, в общем, невероятно энергоэффективной? С точки зрения общей энергии, мы получим не только поразительные значения PUE, но общая стоимость энергии, затраченной на объект будет также значительно снижена. Сколько энергии идет на производство бетона? Нам нужно будет столько энергии? Сколько энергии идет на питание инженерных строительных машин? Это тоже будет значительно снижено! Главным стимулом является достижение среднего PUE не больше 1.125 для всех наших дата-центров к 2012 году. Более того, у нас есть задача сокращения общего количества меди и воды в дата-центрах. Мы думаем, что эти задачи станут следующей заботой отрасли после того как будет решена энергетическая проблема. Итак, сегодня мы спрашиваем себя…“как можно построить дата-центр с меньшим объемом строительных работ”?
    Строительство дата центров без чиллеров

    We have talked openly and publicly about building chiller-less data centers and running our facilities using aggressive outside economization. Our sincerest hope is that Gen 4 will completely eliminate the use of water. Today’s data centers use massive amounts of water and we see water as the next scarce resource and have decided to take a proactive stance on making water conservation part of our plan.

    Мы открыто и публично говорили о строительстве дата-центров без чиллеров и активном использовании в наших центрах обработки данных технологий свободного охлаждения или фрикулинга. Мы искренне надеемся, что Gen 4 позволит полностью отказаться от использования воды. Современные дата-центры расходуют большие объемы воды и так как мы считаем воду следующим редким ресурсом, мы решили принять упреждающие меры и включить экономию воды в свой план.

    By sharing this with the industry, we believe everyone can benefit from our methodology. While this concept and approach may be intimidating (or downright frightening) to some in the industry, disclosure ultimately is better for all of us.

    Делясь этим опытом с отраслью, мы считаем, что каждый сможет извлечь выгоду из нашей методологией. Хотя эта концепция и подход могут показаться пугающими (или откровенно страшными) для некоторых отраслевых специалистов, раскрывая свои планы мы, в конечном счете, делаем лучше для всех нас.

    Gen 4 design (even more than just containers), could reduce the ‘religious’ debates in our industry. With the central spine infrastructure in place, containers or pre-manufactured server halls can be either AC or DC, air-side economized or water-side economized, or not economized at all (though the sanity of that might be questioned). Gen 4 will allow us to decommission, repair and upgrade quickly because everything is modular. No longer will we be governed by the initial decisions made when constructing the facility. We will have almost unlimited use and re-use of the facility and site. We will also be able to use power in an ultra-fluid fashion moving load from critical to non-critical as use and capacity requirements dictate.

    Проект Gen 4 позволит уменьшить ‘религиозные’ споры в нашей отрасли. Располагая базовой инфраструктурой, контейнеры или сборные серверные могут оборудоваться системами переменного или постоянного тока, воздушными или водяными экономайзерами, или вообще не использовать экономайзеры. Хотя можно подвергать сомнению разумность такого решения. Gen 4 позволит нам быстро выполнять работы по выводу из эксплуатации, ремонту и модернизации, поскольку все будет модульным. Мы больше не будем руководствоваться начальными решениями, принятыми во время строительства дата-центра. Мы сможем использовать этот дата-центр и инфраструктуру в течение почти неограниченного периода времени. Мы также сможем применять сверхгибкие методы использования электрической энергии, переводя оборудование в режимы критической или некритической нагрузки в соответствии с требуемой мощностью.
    Gen 4 – это стандартная платформа

    Finally, we believe this is a big game changer. Gen 4 will provide a standard platform that our industry can innovate around. For example, all modules in our Gen 4 will have common interfaces clearly defined by our specs and any vendor that meets these specifications will be able to plug into our infrastructure. Whether you are a computer vendor, UPS vendor, generator vendor, etc., you will be able to plug and play into our infrastructure. This means we can also source anyone, anywhere on the globe to minimize costs and maximize performance. We want to help motivate the industry to further innovate—with innovations from which everyone can reap the benefits.

    Наконец, мы уверены, что это будет фактором, который значительно изменит ситуацию. Gen 4 будет представлять собой стандартную платформу, которую отрасль сможет обновлять. Например, все модули в нашем Gen 4 будут иметь общепринятые интерфейсы, четко определяемые нашими спецификациями, и оборудование любого поставщика, которое отвечает этим спецификациям можно будет включать в нашу инфраструктуру. Независимо от того производите вы компьютеры, ИБП, генераторы и т.п., вы сможете включать свое оборудование нашу инфраструктуру. Это означает, что мы также сможем обеспечивать всех, в любом месте земного шара, тем самым сводя до минимума затраты и максимальной увеличивая производительность. Мы хотим создать в отрасли мотивацию для дальнейших инноваций – инноваций, от которых каждый сможет получать выгоду.
    Главные характеристики дата-центров четвертого поколения Gen4

    To summarize, the key characteristics of our Generation 4 data centers are:

    Scalable
    Plug-and-play spine infrastructure
    Factory pre-assembled: Pre-Assembled Containers (PACs) & Pre-Manufactured Buildings (PMBs)
    Rapid deployment
    De-mountable
    Reduce TTM
    Reduced construction
    Sustainable measures

    Ниже приведены главные характеристики дата-центров четвертого поколения Gen 4:

    Расширяемость;
    Готовая к использованию базовая инфраструктура;
    Изготовление в заводских условиях: сборные контейнеры (PAC) и сборные здания (PMB);
    Быстрота развертывания;
    Возможность демонтажа;
    Снижение времени вывода на рынок (TTM);
    Сокращение сроков строительства;
    Экологичность;

    Map applications to DC Class

    We hope you join us on this incredible journey of change and innovation!

    Long hours of research and engineering time are invested into this process. There are still some long days and nights ahead, but the vision is clear. Rest assured however, that we as refine Generation 4, the team will soon be looking to Generation 5 (even if it is a bit farther out). There is always room to get better.


    Использование систем электропитания постоянного тока.

    Мы надеемся, что вы присоединитесь к нам в этом невероятном путешествии по миру изменений и инноваций!

    На этот проект уже потрачены долгие часы исследований и проектирования. И еще предстоит потратить много дней и ночей, но мы имеем четкое представление о конечной цели. Однако будьте уверены, что как только мы доведем до конца проект модульного дата-центра четвертого поколения, мы вскоре начнем думать о проекте дата-центра пятого поколения. Всегда есть возможность для улучшений.

    So if you happen to come across Goldilocks in the forest, and you are curious as to why she is smiling you will know that she feels very good about getting very close to ‘JUST RIGHT’.

    Generations of Evolution – some background on our data center designs

    Так что, если вы встретите в лесу девочку по имени Лютик, и вам станет любопытно, почему она улыбается, вы будете знать, что она очень довольна тем, что очень близко подошла к ‘ОПИМАЛЬНОМУ РЕШЕНИЮ’.
    Поколения эволюции – история развития наших дата-центров

    We thought you might be interested in understanding what happened in the first three generations of our data center designs. When Ray Ozzie wrote his Software plus Services memo it posed a very interesting challenge to us. The winds of change were at ‘tornado’ proportions. That “plus Services” tag had some significant (and unstated) challenges inherent to it. The first was that Microsoft was going to evolve even further into an operations company. While we had been running large scale Internet services since 1995, this development lead us to an entirely new level. Additionally, these “services” would span across both Internet and Enterprise businesses. To those of you who have to operate “stuff”, you know that these are two very different worlds in operational models and challenges. It also meant that, to achieve the same level of reliability and performance required our infrastructure was going to have to scale globally and in a significant way.

    Мы подумали, что может быть вам будет интересно узнать историю первых трех поколений наших центров обработки данных. Когда Рэй Оззи написал свою памятную записку Software plus Services, он поставил перед нами очень интересную задачу. Ветра перемен двигались с ураганной скоростью. Это окончание “plus Services” скрывало в себе какие-то значительные и неопределенные задачи. Первая заключалась в том, что Майкрософт собиралась в еще большей степени стать операционной компанией. Несмотря на то, что мы управляли большими интернет-сервисами, начиная с 1995 г., эта разработка подняла нас на абсолютно новый уровень. Кроме того, эти “сервисы” охватывали интернет-компании и корпорации. Тем, кому приходится всем этим управлять, известно, что есть два очень разных мира в области операционных моделей и задач. Это также означало, что для достижения такого же уровня надежности и производительности требовалось, чтобы наша инфраструктура располагала значительными возможностями расширения в глобальных масштабах.

    It was that intense atmosphere of change that we first started re-evaluating data center technology and processes in general and our ideas began to reach farther than what was accepted by the industry at large. This was the era of Generation 1. As we look at where most of the world’s data centers are today (and where our facilities were), it represented all the known learning and design requirements that had been in place since IBM built the first purpose-built computer room. These facilities focused more around uptime, reliability and redundancy. Big infrastructure was held accountable to solve all potential environmental shortfalls. This is where the majority of infrastructure in the industry still is today.

    Именно в этой атмосфере серьезных изменений мы впервые начали переоценку ЦОД-технологий и технологий вообще, и наши идеи начали выходить за пределы общепринятых в отрасли представлений. Это была эпоха ЦОД первого поколения. Когда мы узнали, где сегодня располагается большинство мировых дата-центров и где находятся наши предприятия, это представляло весь опыт и навыки проектирования, накопленные со времени, когда IBM построила первую серверную. В этих ЦОД больше внимания уделялось бесперебойной работе, надежности и резервированию. Большая инфраструктура была призвана решать все потенциальные экологические проблемы. Сегодня большая часть инфраструктуры все еще находится на этом этапе своего развития.

    We soon realized that traditional data centers were quickly becoming outdated. They were not keeping up with the demands of what was happening technologically and environmentally. That’s when we kicked off our Generation 2 design. Gen 2 facilities started taking into account sustainability, energy efficiency, and really looking at the total cost of energy and operations.

    Очень быстро мы поняли, что стандартные дата-центры очень быстро становятся устаревшими. Они не поспевали за темпами изменений технологических и экологических требований. Именно тогда мы стали разрабатывать ЦОД второго поколения. В этих дата-центрах Gen 2 стали принимать во внимание такие факторы как устойчивое развитие, энергетическая эффективность, а также общие энергетические и эксплуатационные.

    No longer did we view data centers just for the upfront capital costs, but we took a hard look at the facility over the course of its life. Our Quincy, Washington and San Antonio, Texas facilities are examples of our Gen 2 data centers where we explored and implemented new ways to lessen the impact on the environment. These facilities are considered two leading industry examples, based on their energy efficiency and ability to run and operate at new levels of scale and performance by leveraging clean hydro power (Quincy) and recycled waste water (San Antonio) to cool the facility during peak cooling months.

    Мы больше не рассматривали дата-центры только с точки зрения начальных капитальных затрат, а внимательно следили за работой ЦОД на протяжении его срока службы. Наши объекты в Куинси, Вашингтоне, и Сан-Антонио, Техас, являются образцами наших ЦОД второго поколения, в которых мы изучали и применяли на практике новые способы снижения воздействия на окружающую среду. Эти объекты считаются двумя ведущими отраслевыми примерами, исходя из их энергетической эффективности и способности работать на новых уровнях производительности, основанных на использовании чистой энергии воды (Куинси) и рециклирования отработанной воды (Сан-Антонио) для охлаждения объекта в самых жарких месяцах.

    As we were delivering our Gen 2 facilities into steel and concrete, our Generation 3 facilities were rapidly driving the evolution of the program. The key concepts for our Gen 3 design are increased modularity and greater concentration around energy efficiency and scale. The Gen 3 facility will be best represented by the Chicago, Illinois facility currently under construction. This facility will seem very foreign compared to the traditional data center concepts most of the industry is comfortable with. In fact, if you ever sit around in our container hanger in Chicago it will look incredibly different from a traditional raised-floor data center. We anticipate this modularization will drive huge efficiencies in terms of cost and operations for our business. We will also introduce significant changes in the environmental systems used to run our facilities. These concepts and processes (where applicable) will help us gain even greater efficiencies in our existing footprint, allowing us to further maximize infrastructure investments.

    Так как наши ЦОД второго поколения строились из стали и бетона, наши центры обработки данных третьего поколения начали их быстро вытеснять. Главными концептуальными особенностями ЦОД третьего поколения Gen 3 являются повышенная модульность и большее внимание к энергетической эффективности и масштабированию. Дата-центры третьего поколения лучше всего представлены объектом, который в настоящее время строится в Чикаго, Иллинойс. Этот ЦОД будет выглядеть очень необычно, по сравнению с общепринятыми в отрасли представлениями о дата-центре. Действительно, если вам когда-либо удастся побывать в нашем контейнерном ангаре в Чикаго, он покажется вам совершенно непохожим на обычный дата-центр с фальшполом. Мы предполагаем, что этот модульный подход будет способствовать значительному повышению эффективности нашего бизнеса в отношении затрат и операций. Мы также внесем существенные изменения в климатические системы, используемые в наших ЦОД. Эти концепции и технологии, если применимо, позволят нам добиться еще большей эффективности наших существующих дата-центров, и тем самым еще больше увеличивать капиталовложения в инфраструктуру.

    This is definitely a journey, not a destination industry. In fact, our Generation 4 design has been under heavy engineering for viability and cost for over a year. While the demand of our commercial growth required us to make investments as we grew, we treated each step in the learning as a process for further innovation in data centers. The design for our future Gen 4 facilities enabled us to make visionary advances that addressed the challenges of building, running, and operating facilities all in one concerted effort.

    Это определенно путешествие, а не конечный пункт назначения. На самом деле, наш проект ЦОД четвертого поколения подвергался серьезным испытаниям на жизнеспособность и затраты на протяжении целого года. Хотя необходимость в коммерческом росте требовала от нас постоянных капиталовложений, мы рассматривали каждый этап своего развития как шаг к будущим инновациям в области дата-центров. Проект наших будущих ЦОД четвертого поколения Gen 4 позволил нам делать фантастические предположения, которые касались задач строительства, управления и эксплуатации объектов как единого упорядоченного процесса.


    Тематики

    Синонимы

    EN

    Русско-английский словарь нормативно-технической терминологии > модульный центр обработки данных (ЦОД)

  • 18 модель eSCM-CL

    1. eSourcing Capability Model for Client Organizations
    2. eSCM- CL

     

    модель eSCM-CL
    (ITIL Service Strategy)
    Система, помогающая организациям проводить анализ и принимать решения в части выбора модели предоставления услуг. Модель eSCM-CL разработана в Университете Карнеги-Меллона, США.
    См. тж. модель eSCM-SP.
    [Словарь терминов ITIL версия 1.0, 29 июля 2011 г.]

    EN

    eSourcing Capability Model for Client Organizations |eSCM- CL
    (ITIL Service Strategy)
    A framework to help organizations in their analysis and decision-making on service sourcing models and strategies. It was developed by Carnegie Mellon University in the US.
    See also eSourcing Capability Model for Service Providers.
    [Словарь терминов ITIL версия 1.0, 29 июля 2011 г.]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > модель eSCM-CL

  • 19 модель принятия решений

    Универсальный русско-английский словарь > модель принятия решений

  • 20 коэффициент

    coefficient, constant, factor, figure, index, modulus, rate, ratio
    * * *
    коэффицие́нт м.
    coefficient
    коэффицие́нт при … — the coefficient of …
    коэффицие́нт учи́тывает (напр. трение, турбулентность и т. п.) — the coefficient corrects for (e. g., friction, turbulence, etc.)
    коэффицие́нт абрази́вности — abrasion factor
    коэффицие́нт абсо́рбции — absorption factor, absorptance, absorptivity
    коэффицие́нт авари́йного просто́я — emergency shut-down coefficient
    аку́стико-электри́ческий коэффицие́нт — acoustic-electric factor, acousto-electric index
    коэффицие́нт амплиту́дного искаже́ния — amplitude distortion factor
    коэффицие́нт амплиту́ды (напряжения тока и т. п.) — peak factor
    коэффицие́нт амплиту́ды и́мпульса — crest factor of a pulse
    коэффицие́нт анаморфо́зы опт. — anamorphic ratio, anamorphosing factor
    коэффицие́нт асимме́трии индикатри́сы рассе́яния — scattering indicatrix, asymmetry coefficient
    барометри́ческий коэффицие́нт — barometric coefficient
    коэффицие́нт бегу́щей волны́ — travelling-wave factor
    коэффицие́нт безопа́сности — safety factor, margin of safety
    коэффицие́нт безопа́сности по отноше́нию к … — factor of safety on …
    коэффицие́нт блокиро́вки вчт.blocking factor
    бу́квенный коэффицие́нт вчт.literal coefficient
    коэффицие́нт быстрохо́дности ( гидротурбины) — specific speed, type characteristic
    вариацио́нный коэффицие́нт — coefficient of variation
    коэффицие́нт вертика́льной полноты́ мор.vertical prismatic coefficient
    весово́й коэффицие́нт — weight coefficient, weight factor
    коэффицие́нт взаи́мной инду́кции — mutual inductance
    коэффицие́нт ви́димости — visibility factor
    коэффицие́нт вихрево́го сопротивле́ния — eddy-making resistance coefficient
    коэффицие́нт влия́ния ко́рпуса мор.hull efficiency
    коэффицие́нт возвра́та — reset ratio
    коэффицие́нт возвра́та тепла́ — reheat factor
    коэффицие́нт возде́йствия по интегра́лу — integral action coefficient
    коэффицие́нт возде́йствия по произво́дной — derivative action coefficient
    коэффицие́нт волново́го сопротивле́ния — wave-resistance [wave-drag] coefficient
    коэффицие́нт волоче́ния — drag coefficient
    коэффицие́нт воспроизводи́мости — repeatability factor
    коэффицие́нт воспроизво́дства ( ядерного горючего) — breeding ratio
    коэффицие́нт воспроизво́дства, избы́точный ( ядерного горючего) — breeding gain
    коэффицие́нт втори́чной эми́ссии — secondary emission ratio
    коэффицие́нт вы́годности автотрансформа́тора — co-ratio of an autotransformer
    коэффицие́нт га́зового усиле́ния — gas amplification factor
    коэффицие́нт геометри́ческого подо́бия — coefficient of geometric similarity
    коэффицие́нт гистере́зиса — hysteresis constant
    коэффицие́нт гото́вности — availability (factor)
    коэффицие́нт дальноме́ра — stadia factor
    коэффицие́нт деле́ния (делителя частоты, пересчётной схемы и т. п.) — count-down (ratio), division ratio
    коэффицие́нт демпфи́рования — damping factor
    коэффицие́нт диэлектри́ческих поте́рь — dielectric loss factor
    коэффицие́нт дневно́го освеще́ния — daylight factor
    коэффицие́нт добро́тности — (контура, катушки и т. п.) factor of merit Q-factor; ( измерительного прибора) torque-to-weight ratio
    коэффицие́нт дове́рия стат.confidence coefficient
    коэффицие́нт дроссели́рования — throttling coefficient
    коэффицие́нт ду́бности — degree of tannage, tanning number
    коэффицие́нт есте́ственной освещё́нности — daylight factor
    коэффицие́нт жё́сткости — stiffness coefficient
    жи́дкостный коэффицие́нт кож. — volume [water-to-goods, water-to-pelt] ratio
    коэффицие́нт загру́зки — loading factor
    коэффицие́нт загру́зки турби́ны — turbine load factor
    коэффицие́нт загрязне́ния — fouling factor
    коэффицие́нт заня́тия тлф.call fill
    коэффицие́нт запа́здывания — lag coefficient
    коэффицие́нт запа́са при отпуска́нии реле́ — safety factor for drop-out
    коэффицие́нт запа́са при сраба́тывании реле́ — safety factor for pick-up
    коэффицие́нт заполне́ния ( отношение длительности импульса к периоду повторения) — pulse ratio, pulse duty factor
    коэффицие́нт заполне́ния обмо́тки — space factor of a winding
    коэффицие́нт заполне́ния су́дна — block coefficient of a ship
    коэффицие́нт затуха́ния — damping factor; ( линии передачи) attenuation constant
    коэффицие́нт защи́тного де́йствия анте́нны — front-to-back ratio of an antenna
    коэффицие́нт звукопоглоще́ния — sound absorption coefficient, acoustical absorptivity
    коэффицие́нт звукопропуска́ния — sound transmission coefficient acoustical transmittivity
    коэффицие́нт зерка́льных поме́х радиоimage ratio
    коэффицие́нт избы́тка во́здуха — excess-air-coefficient
    коэффицие́нт излуче́ния — emissivity
    коэффицие́нт инве́рсии — inversion level ratio
    коэффицие́нт инду́кции — self-inductance
    коэффицие́нт иониза́ции — ionization coefficient
    коэффицие́нт искаже́ния — distortion factor
    коэффицие́нт искаже́ния площаде́й картогр.area-distortion ratio
    коэффицие́нт искаже́ния форм картогр.shape-distortion ratio
    коэффицие́нт испо́льзования — utilization factor
    коэффицие́нт ка́чества ( в радиобиологии) — relative biological effectiveness
    коэффицие́нт ка́чества (телегра́фной) свя́зи — error rate of (telegraph) communication
    коэффицие́нт кисло́тности — acid number
    коэффицие́нт когере́нтности — normalized coherence function
    коэффицие́нт контра́стности — gamma
    коэффицие́нт концентра́ции свз. — demand [load, capacity] factor
    коэффицие́нт концентра́ции напряже́ний (напр. в металле) — notch-sensitivity index
    коэффицие́нт концентра́ции телефо́нной нагру́зки — telephone traffic load factor
    коэффицие́нт кру́тки — coefficient of twist, twist factor
    коэффицие́нт лету́чести — fugacity coefficient
    коэффицие́нт лине́йного расшире́ния — coefficient of linear expansion
    коэффицие́нт лобово́го сопротивле́ния — drag coefficient
    коэффицие́нт массообме́на — mass-transfer coefficient
    коэффицие́нт массопереда́чи — mass-transfer coefficient
    масшта́бный коэффицие́нт вчт.scale factor
    уточня́ть масшта́бный коэффицие́нт — revise (and improve) scale factor
    коэффицие́нт моде́ли ( в моделировании) — coefficient of the model equation
    деформи́ровать коэффицие́нты моде́ли — strain the coefficients in the model equation(s)
    коэффицие́нт модуля́ции — ( при амплитудной модуляции) брит. depth of modulation; амер. percent modulation; ( при частотной модуляции) modulation index
    коэффицие́нт моме́нта — torque coefficient
    коэффицие́нт мо́щности — power factor, cos \\
    коэффицие́нт нагру́зки эл.load factor
    коэффицие́нт надё́жности — reliability index
    коэффицие́нт нака́чки элк.pumping ratio
    коэффицие́нт напра́вленного де́йствия анте́нны — directive (antenna) gain
    коэффицие́нт нелине́йного искаже́ния — non-linear distortion [klirr] factor
    коэффицие́нт неодновреме́нности — diversity factor
    неопределё́нный коэффицие́нт — undetermined coefficient
    коэффицие́нт обжа́тия прок. — draft ratio, reduction coefficient
    коэффицие́нт обра́тной свя́зи — feedback factor
    коэффицие́нт о́бщей полноты́ мор.block coefficient
    коэффицие́нт объедине́ния по вхо́ду элк.fan-in
    коэффицие́нт объё́много расшире́ния — coefficient of volumetric expansion
    коэффицие́нт ослабле́ния синфа́зных сигна́лов — common-mode rejection ratio
    коэффицие́нт оста́точного сопротивле́ния — residual-resistance coefficient
    коэффицие́нт отда́чи — yield efficiency
    коэффицие́нт отпуска́ния реле́ — reset factor of a relay
    коэффицие́нт отраже́ния — reflectance, reflectivity, reflection factor
    переводно́й коэффицие́нт — conversion factor
    коэффицие́нт переда́чи элк., автмт.gain (factor)
    коэффицие́нт переда́чи дифференциа́льного регуля́тора — derivative gain (factor)
    коэффицие́нт переда́чи интегра́льного регуля́тора — integral gain (factor)
    коэффицие́нт переда́чи по напряже́нию — voltage transfer ratio
    коэффицие́нт переда́чи преобразова́теля — transducer gain
    коэффицие́нт переда́чи пропорциона́льного регуля́тора — proportional gain [factor]
    коэффицие́нт переда́чи прямо́го тра́кта — forward-circuit gain
    коэффицие́нт перекрё́стных поме́х — crosstalk factor
    коэффицие́нт перено́са — (base) transport factor
    коэффицие́нт переориенти́рования топ.overcorrection factor
    коэффицие́нт пересчё́та — scaling ratio, scaling factor
    коэффицие́нт пло́тности укла́дки ( лесоматериалов) — stacking factor
    коэффицие́нт пове́рхностного расшире́ния — coefficient of surface expansion
    коэффицие́нт повторе́ния вчт.replication factor
    коэффицие́нт поглоще́ния — absorption factor, absorptance, absorptivity
    коэффицие́нт подавле́ния синфа́зной поме́хи — common-mode rejection factor
    коэффицие́нт подъё́мной си́лы — lift coefficient
    коэффицие́нт поле́зного де́йствия [кпд] — efficiency
    коэффицие́нт поле́зного де́йствия излуче́ния анте́нны — radiation efficiency
    коэффицие́нт поле́зного де́йствия, индика́торный — indicated efficiency
    коэффицие́нт поле́зного де́йствия по ано́ду — plate efficiency
    коэффицие́нт поле́зного де́йствия, тя́говый — propulsion efficiency
    коэффицие́нт поле́зного де́йствия, эффекти́вный — effective [net] efficiency
    коэффицие́нт по́лного сопротивле́ния — total-resistance coefficient
    коэффицие́нт полнодреве́сности — stacking factor
    коэффицие́нт полноты́ водоизмеще́ния — block coefficient
    коэффицие́нт полноты́ ми́дель-шпанго́ута — midship(-section) coefficient
    коэффицие́нт полноты́ пло́щади ватерли́нии — waterplane (area) coefficient
    коэффицие́нт полноты́ пло́щади пла́вания — waterplane (area) coefficient
    коэффицие́нт полноты́ сгора́ния — combustion efficiency
    коэффицие́нт по́лных затра́т — coefficient of overall outlays
    коэффицие́нт по́ля эл.field-form factor
    коэффицие́нт попере́чной полноты́ мор.transverse prismatic coefficient
    попра́вочный коэффицие́нт — correction factor
    коэффицие́нт попу́тного пото́ка мор.wake fraction
    коэффицие́нт по́ристости — voids ratio
    коэффицие́нт поры́вистости — gust factor
    постоя́нный коэффицие́нт — constant coefficient
    коэффицие́нт поте́рь — loss factor
    коэффицие́нт потокосцепле́ния — linkage coefficient
    коэффицие́нт преломле́ния — index of refraction, refractive index
    коэффицие́нт продо́льной полноты́ мор.prismatic coefficient
    коэффицие́нт проница́емости се́тки ( лампы) — penetration factor, durchgriff, through-grip
    коэффицие́нт пропорциона́льного возде́йствия — proportional action (factor)
    коэффицие́нт пропорциона́льности — coefficient [factor] of proportionality, proportionality factor
    пропульси́вный коэффицие́нт мор.propulsive coefficient
    коэффицие́нт просто́я — downtime rate, downtime ratio
    коэффицие́нт профила́ктики — preventive maintenance ratio
    коэффицие́нт прямоуго́льности
    2. (усилителей, приёмников) bandwidth ratio, (bandwidth) shape factor, relative bandwidth
    коэффицие́нт прямы́х затра́т — cost coefficient
    коэффицие́нт Пуассо́на сопр.Poisson's ratio
    коэффицие́нт пульса́ции — ripple factor, ripple ratio, percent ripple
    коэффицие́нт пусто́тности — void ratio
    коэффицие́нт разбавле́ния — dilution ratio
    коэффицие́нт разветвле́ния по вы́ходу элк.fan-out
    коэффицие́нт распростране́ния — propagation factor; ( линии передачи) propagation constant
    коэффицие́нт расшире́ния, терми́ческий — thermal coefficient of expansion
    коэффицие́нт регре́ссии — coefficient of regression
    коэффицие́нт регули́рования — control factor
    коэффицие́нт самовыра́внивания — self-regulation
    коэффицие́нт самоинду́кции — (self-)inductance
    коэффицие́нт свя́зи — coupling coefficient
    коэффицие́нт скольже́ния — coefficient of sliding [kinetic] friction
    коэффицие́нт скру́тки ( кабеля) — lay ratio
    коэффицие́нт слы́шимости — audibility factor
    коэффицие́нт стабилиза́ции — stabilization factor
    коэффицие́нт стати́ческой оши́бки — position error coefficient
    коэффицие́нт стоя́чей волны́ — standing-wave ratio, SWR
    коэффицие́нт стоя́чей волны́ по напряже́нию — voltage standing-wave rate, VSWR
    коэффицие́нт суже́ния струи́ — contraction coefficient
    коэффицие́нт та́ры ваго́на — tare-load ratio of a railway car
    коэффицие́нт температу́рного расшире́ния — coefficient of thermal expansion
    температу́рный коэффицие́нт — temperature coefficient
    температу́рный коэффицие́нт ё́мкости — temperature coefficient of capacitance
    температу́рный коэффицие́нт индукти́вности — temperature coefficient of inductance
    температу́рный коэффицие́нт сопротивле́ния — temperature coefficient of resistance
    температу́рный коэффицие́нт частоты́ — temperature coefficient of frequency
    температу́рный коэффицие́нт электродви́жущей си́лы — temperature coefficient of electromotive force
    коэффицие́нт температуропрово́дности — thermal diffusivity
    коэффицие́нт тензочувстви́тельности — the gauge factor of a strain gauge
    коэффицие́нт теплово́го расшире́ния — coefficient of thermal expansion
    коэффицие́нт термоэлектродви́жущей си́лы — thermoelectric coefficient
    коэффицие́нт трансформа́ции — transformation ratio
    коэффицие́нт тре́ния — friction coefficient
    коэффицие́нт тре́ния движе́ния — coefficient of sliding [kinetic] friction
    коэффицие́нт тре́ния поко́я — coefficient of friction of rest, coefficient of static friction
    трёхцве́тный коэффицие́нт (в колориметрии, телевидении) — trichromatic coefficient, chromaticity coordinate
    углово́й коэффицие́нт ( прямой линии) — slope
    уде́льный коэффицие́нт ( в колориметрии) — relative trichromatic coordinate, distribution coefficient
    коэффицие́нт уплотне́ния ( в порошковой металлургии) — compression ratio
    коэффицие́нт уса́дки — shrinkage factor, shrinkage ratio
    коэффицие́нт усиле́ния
    1. ( лампы) amplification factor
    2. (каскада, схемы) gain (factor)
    коэффицие́нт усиле́ния анте́нны — antenna gain
    коэффицие́нт усиле́ния без обра́тной свя́зи — open-loop gain
    коэффицие́нт усиле́ния по то́ку — current gain
    коэффицие́нт уста́лости — fatigue ratio
    коэффицие́нт утри́рования релье́фной ка́рты — ratio of exaggeration
    коэффицие́нт фа́зового регули́рования — phase control factor
    коэффицие́нт фа́зы ( линии передачи) — phase (shift) constant
    коэффицие́нт фо́рмы
    1. (напряжения, тока) form factor
    2. ( лесоматериала) diameter quotient
    холоди́льный коэффицие́нт — coefficient of performance of a refrigerating machine
    числово́й коэффицие́нт — numerical coefficient
    коэффицие́нт шерохова́тости — roughness factor, roughness coefficient
    коэффицие́нт шу́ма — noise factor, noise figure
    коэффицие́нт шунти́рования изм.multiplying power of a shunt
    коэффицие́нт экрани́рования — screening number, screening constant
    коэффицие́нт электровооружё́нности труда́ — electric power (available) per worker
    коэффицие́нт эффекти́вности усили́теля — root gain-bandwidth product
    коэффицие́нт я́ркости — luminance factor

    Русско-английский политехнический словарь > коэффициент

См. также в других словарях:

  • Model Rail — Editor Ben Jones Categories British Frequency Four weekly Circulation 28,337 (2009) First issue 1997 Company Bauer …   Wikipedia

  • Model military vehicle — Main article: Military model 1/35 scale T 34 tank model with a landscaped base …   Wikipedia

  • Model European Union — Type NGO Simulation Purpose/focus Education Location Strasbourg, France …   Wikipedia

  • Making of a Male Model — Directed by Irving J. Moore Produced by Aaron Spelling E. Duke Vincent …   Wikipedia

  • Model-dependent realism — is a controversial philosophical approach to scientific inquiry, which accepts that reality can always be interpreted in a number of different ways, and focuses on how well our models of the world do at describing the observed phenomena. It… …   Wikipedia

  • Model A (band) — Model A Origin Sacramento, California, USA Genres Rock Art rock Progressive Experimental Electro Psychedelic Space Rock Years active 2000 – …   Wikipedia

  • Model United Nations (MUN) Resolution — is a simulated report of the real United Nations resolutions. These resolutions are written by the participants of Model United Nations conferences, who are usually high school or college students. Resolutions are vital to all MUN conferences… …   Wikipedia

  • Making a Stand — Arrested Development episode Episode no. Season 3 Episode 8 Directed by Peter Lauer Written by …   Wikipedia

  • Model-based design — (MBD) is a mathematical and visual method of addressing problems associated with designing complex control,[1][2] signal processing[3] and communication systems. It is used in many motion control, industrial equipment, aerospace, and automotive… …   Wikipedia

  • Model-driven engineering — (MDE) is a software development methodology which focuses on creating and exploiting domain models (that is, abstract representations of the knowledge and activities that govern a particular application domain), rather than on the computing (or… …   Wikipedia

  • Model-driven security — (MDS) means applying model driven approaches (and especially the concepts behind model driven software development) [1] to security. Contents 1 Development of the concept 2 Opinions of industry analysts …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»